On mex-related partition functions of Andrews and Newman

نویسندگان

چکیده

The minimal excludant, or “mex” function, on a set S of positive integers is the least integer not in S. In recent paper, Andrews and Newman extended mex-function to partitions found numerous surprising partition identities connected with these functions. Very recently, da Silva Sellers present parity considerations one families functions studied, namely $$p_{t,t}(n)$$ , provide complete characterizations $$p_{1,1}(n)$$ $$p_{3,3}(n)$$ . this article, we study when $$t=2^{\alpha }, 3\cdot 2^{\alpha }$$ for all $$\alpha \ge 1$$ We prove that $$p_{2^{\alpha },2^{\alpha }}(n)$$ $$p_{3\cdot are almost always even Using result Ono Taguchi nilpotency Hecke operators, also find infinite congruences modulo 2 satisfied by

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On partition functions of Andrews and Stanley

G. E. Andrews has established a refinement of the generating function for partitions π according to the numbers O(π) and O(π′) of odd parts in π and the conjugate of π, respectively. In this paper, we derive a refined generating function for partitions into at most M parts less than or equal to N , which is a finite case of Andrew’s refinement.

متن کامل

A Combinatorial Proof of Andrews’ Partition Functions Related to Schur’s Partition Theorem

We construct an involution to show equality between partition functions related to Schur’s second partition theorem.

متن کامل

Andrews Style Partition Identities

We propose a method to construct a variety of partition identities at once. The main application is an all-moduli generalization of some of Andrews’ results in [5]. The novelty is that the method constructs solutions to functional equations which are satisfied by the generating functions. In contrast, the conventional approach is to show that a variant of well-known series satisfies the system ...

متن کامل

The Andrews–Sellers family of partition congruences

In 1994, James Sellers conjectured an infinite family of Ramanujan type congruences for 2-colored Frobenius partitions introduced by George E. Andrews. These congruences arise modulo powers of 5. In 2002 Dennis Eichhorn and Sellers were able to settle the conjecture for powers up to 4. In this article, we prove Sellers' conjecture for all powers of 5. In addition, we discuss why the Andrews-Sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in number theory

سال: 2021

ISSN: ['2363-9555', '2522-0160']

DOI: https://doi.org/10.1007/s40993-021-00284-8